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     History is a study of the socialized activities of human beings in the past and of 
the methods that social organizations employ to perform specific functions. Of all 
social organizations, family and kinship groups may be regarded as the most basic. 
One well-recognized cultural trait of traditional China was the existence of the 
extended family system or clan, which, as defined by Murdock, is a kin group “based 
upon both a rule of residence and a rule of descent.” In addition to being a unilinear 
descent group, a clan also performs many functions related to education, ceremony, 
social security, and maintenance of law and order. Whereas in a modern society, most 
of these functions are performed by the government, the clan was a primary social 
group (or organization) through which these functions were carried out before the art 
of government was perfected. The development of the Chinese clan institution, which 
started from the Sung dynasty, was irrevocably eroded during the middle of the 
nineteenth century, much like all other major traditional Chinese institutions. The 
study of Chinese clans is thus essential for an understanding of Chinese history.1  
     A clan, as a self-contained socioeconomic functional group, has a hierarchical 
structure to facilitate the transmission of information and authority and to coordinate 

                                                       
* John C. H. Fei is Professor of Economics at Yale University and Director of the Taiwan Institute of 
Economic Research, Taipei. Ts’ui-jung Liu is a Research Fellow at the Institute of Economics, 
Academia Sinica, and a Professor at the Department of History, National Taiwan University. This 
article is a partial result of a research project supported by the National Science Council of the 
Republic of China (1978-1980), and by the Concilium of International Study of Yale University 
(1978-1979). The authors acknowledge this support with gratitude.   
1  George P. Murdock, Social Structure (New York, 1949), 66-68. Although Maurice Freedman in 
Lineage Organization in Southeastern China (London, 1958), had made a distinction between “clan” 
and “lineage” and preferred to use the latter to refer to Chinese chia-tsu, we have adopted Murdock’s 
definition because it emphasizes the “two rules” which fulfill the analytical requirements of our article. 
For studies on Chinese clan, see Hui-chen Wang Liu, The Traditional Chinese Clan Rules (Locust 
Valley, N.Y., 1959); Denis C. Twitchett, “The Fan Clan’s Charitable Estate, 1050-1760,” in David S. 
Nivison and Arthur F. Wright (eds.), Confucianism in Action (Stanford, 1959), 97-133; Wolfram 
Eberhard, Social Mobility in Traditional China (Leiden, 1962); Ping-ti Ho, The Ladder of Success in 
Imperial China: Aspects of Social Mobility, 1368-1911 (New York, 1962); Evelyn S. Rawski, 
Education and Popular Literacy in Ch’ing China (Ann Arbor, 1979); Hilary J. Beattie, Land and 
Lineage in China: A Study of T’ung-ch’eng County, Anhwei, in the Ming and Ch’ing Dynasties 
(Cambridge, 1979). The same body of genealogies was used in these studies as we have used in our 
article but the demographic aspect was neglected in the former studies.  
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various functional related tasks. In the case of Chinese clans, this hierarchical 
structure was based upon the age and generational dimensions of the clan population. 
The group size was also a critical factor since the efficiency of a functional group 
clearly depends upon the scale economy or diseconomy (the efficiency or inefficiency 
of large scale production) that prevails. At any moment in time, these two dimensions 
– the size and the hierarchical structure – can be described by a “hierarchy matrix” of 
the clan (see Table 1 as an illustration). Although, in principle, a particular clan begins 
with a single male ancestor, the starter, the central dynamic phenomenon is of a 
male-oriented regeneration process that may take place over several centuries, 
implying changes in the hierarchy matrix. The purpose of this article is to study the 
rules of such growth from the theoretical and empirical viewpoints.2  
     We emphasize three facets of the growth process: demographical, functional, 
and exogenous. The growth of a clan is, first, a demographic phenomenon following 
the rules (such as the age-specific birth and death rates) established in modern 
demography. (Although the age distribution is the focal point of analysis in modern 
demography, the generational dimension is usually neglected.) In this article, we make 
use of the concept of a male-oriented “generation birth schedule” to illustrate the 
demographic rules of expansion of the clan (see Table 2).  
     A typical clan exhibits an expansion phase followed by a contraction phase (see 
for example, Figure 2). Although a purely demographic theory is relevant only to the 
expansion phase, the disintegration of a clan during the contraction phase is explored 
from the functional point of view. We expect that the clan size will decline eventually 
when diseconomy of scale sets in.    
     The demographically and functionally oriented growth of the clan is an 
idealized process which is constantly disturbed by the exogenous influences of natural 
calamities and wars. It is only after we identify these exogenous interferences that the 
idealized pattern of a life cycle can stand out in clearer perspective. Our conclusions 
are based on the analysis of ten clan genealogies covering a period of five centuries 
(1400-1900).   
 

THE HIERARCHY MATRIX 
 
     A typical hierarchy matrix of a clan is illustrated in Table 1 by that of the Hsü 
clan in the year 1845. The age and birth years are indicated by the row headings and 
the generational identifications are indicated by the column headings. The numbers 

                                                       
2  See Freedman, Lineage Organization, 33-40; H. W. Liu, Clan Rules, 14, for discussions on the clan 
hierarchy and size. Their integration into a hierarchy matrix for empirical implementation has, to our 
knowledge, never been attempted.   
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shown in each cell of this table indicate the numbers of male births and the numbers 
in parentheses for the males survived for each age and generational stratification.  
 

Table 1. The Hsü Clan Hierarchy Matrix in 1845 
 

Time 
 

Age 
Generations  

Total 
 

Survival 
Rates 

Propor- 
tion at 
age (x) 11 12 13 14 15 16 17 

1765 80 G  3 
(0) 

23 
(0) 

28 
(1) 

H  8
(0) 

   62 
(1) 

0.0096 0.12 

1770 75 1 
(0) 

31 
(1) 

45 
(1) 

5 
(0) 

   82 
(2) 

0.0246 0.24 

1775 70 1 
(0) 

30 
(2) 

33 
(1) 

20 
(1) 

2 
(0) 

  86 
(5) 

0.0565 0.61 

1780 65  20 
(2) 

50 
(5) 

26 
(3) 

3 
(0) 

  99 
(10) 

0.1051 1.21 

1785 60  20 
(3) 

47 
(7) 

27 
(5) 

4 
(1) 

  98 
(16) 

0.1679 1.94 

1790 55  19 
(5) 

50 
(12) 

27 
(6) 

9 
(2) 

  105 
(25) 

0.2393 3.03 

1795 50  13 
(4) 

38 
(12) 

52 
(16) 

11 
(3) 

  114 
(35) 

0.3131 4.37 

1800 45  9 
(3) 

43 
(17) 

45 
(18) 

13 
(5) 

1 
(0) 

 111 
(43) 

0.3837 5.22 

1805 40 F    4 
(2) 

35 
(16) 

 60 
(27) 

25 
(11) 

3 
(1) 

    127 
(57) 

0.4472 6.92 

1810 35  1 
(1) 

25 
(13) 

A 61 
(30) 

24 
(12) 

4 
(2) 

 D 
   

115 
(58) 

0.5017 7.04 

1815 30  2 
(1) 

29 
(16) 

68 
(37) 

22 
(12) 

6 
(3) 

 127 
(69) 

0.5464 8.17 

1820 25   26 
(15) 

57 
(34) 

35 
(20) 

10 
(6) 

 128 
(75) 

0.5821 9.10 

1825 20   16 
(10) 

32 
(20) 

34 
(20) 

8 
(5) 

 90 
(55) 

0.6125 6.67 

1830 15   13 
(8) 

41 
(26) 

55 
(36) 

11 
(7) 

 120 
(77) 

0.6382 9.34 

1835 10   8 
(5) 

39 
(26) 

54 
(35) 

22 
(14) 

1 
(1) 

124 
(81) 

0.6570 9.83 

1840 5   10 
(7) 

31 
(21) 

74 
(50) 

27 
(18) 

4 
(3) 

146 
(99) 

0.6766 12.01 

1845 0   6 
(4) 

B 34 
(25) 

73 
(56) 

31 
(23) 

C  9 
(7) 

153 
(115) 

0.7484 13.96 

Total  5 
(0) 

172 
(24) 

502 
(151) 

633 
(295) 

438 
(263) 

123 
(79) 

14 
(11) 

1887 
(823) 

 100 

 
     The hierarchy matrix portrays two-way ordering of member status under the 
clan system. A person generally has highly clan status if he belongs to an earlier 
generation and/or is older. For example, individuals in cell A have a higher (lower) 
status than those in the block ABCD (block AFGH). For certain ceremonial purposes 
the generational ordering takes precedence regardless of age (e.g., the listing of names 
in a funeral announcement or in ancestor worshiping), whereas the opposite is true in 
other clan-related functions (e.g., education and assignment of duty).  
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Figure 1a: Age Distribution of Clan Population 
 

       

Figure 1b: Distribution of Clan Population by generation Identity 
 

The age composition of the male population in this matrix is illustrated in 
Figure 1a. The declining property of this curve shows that the population pyramid of a 
clan is similar to that of the society as a whole as recognized by modern 
demographers. For example, the productive population (aged 15-59) is about 60 
percent, whereas the dependent population (i.e., the very young and old) is about 40 



5 
 

percent. That the age structure of a clan is a mirror of that of the whole society 
suggests that the clan can function as a self-contained unit. With an appropriate age 
structure, the three basic economic functions of an agrarian society (production, 
rearing and education of the youth, and social security for the senior and needy 
members) can all be performed within the clan.3  
     The population distribution by generations of this clan is shown in Figure 1b. 
Its inversed u-shaped pattern indicates that there are relatively few members 
belonging to the older or the younger generations. These two figures imply a 
hierarchical structure in the sense that there are relatively few who are both old and 
belonging to the early generations. A distinct cultural trait of traditional China was 
that this venerable minority not only played leading roles in ceremonies but also 
constituted the authority of control at the top of the social pyramid.  
 

THE GENERATION BIRTH SCHEDULES 
 

     The generational birth schedules are constructed from the genealogies that 
recorded the birth dates of clan members stratified by generations. As an illustration 
of this procedure, the generational birth schedules of the males of the Hsü clan are 
first listed (see Table 2). The number in each column, indicating the number of mail 
births in each five-year interval (with the mid-year indicated on the first column of the 
table), forms a birth schedule of a particular generation. The total number of male 
births in each interval for all generations is indicated in column.4  
     The hierarchy matrix in Table 1 can be derived from the generational birth 
schedules with the aid of demographic principles. Assuming that the male longevity is 
eighty years, the segment of birth schedules from 1765 to 1845 (i.e., with an age 
range of eighty years as blocked in Table 2) is reproduced in Table 1. These entries are 
multiplied by the survival rates to deduce the hierarchy matrix previously discussed.5 

                                                       
3  The proportions of the three broad age groups in a stable population (model west, level 7 with R = 
10) are 36.68%, 57.74%, and 5.57% respectively. See Ansley J. Coale and Paul Demeny, Regional 
Model Life Tables and Stable Populations (Princeton, 1960), 134. The age structure of the Hsü clan in 
1845 was quite close to this model. Notice that in Figure 1a, there is a dent in the curve around age 20. 
This merely reflects the dent of the curve of observed male births around the year 1825. The 
well-known Confucian ideal of social order – the age of Grand Unity (ta-t’ung 大同) – already 
expressed that these basic economic functions be performed by a society. See Li Chi 禮記 (Book of 
Rites), section 9; for an English translation of this section, see William Theodore de Bary et al., Source 
of Chinese Tradition (New York, 1960), 175-176.       
4  An investigation of 16 clan genealogies (including the 10 used in this article) see Ts’ui-jung Liu, 
“The Demographic Dynamics of Some Clans in the Lower Yangtze Area, c. 1400-1900,” paper 
presented at the International Conference on Sinology (Taipei, 1980).  
5  The survival rates are the Lx/5l0 values in the life table. See Appendix 2 for an example of the life 
table of the Hsü clan. For estimating the child mortality rates, two Princeton tables of model west levels 
7 and 8 are used, see Coal and Demeny, Regional Model Life Tables.  
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     From the hierarchy matrix we can readily calculated the total male population 
size as listed in column (14) of Table 2. From the population size we know the time 
path of the growth of the clan. The rates of growth are given in column (15) of Table 
2.6     

 
Table 2. The Generation Birth Schedules, Estimated Male Population 

and Growth Rate of the Hsü Clan in Hsiao-shan 
Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
 
Time 

Generations Total 
Birth* 

Esti- 
mated 
Pop. 

Growth 
Rate 8 9 10 11 12 13 14 15 16 17 18 19 

1600 0 0           0   
1605 2 1           3   
1610 2 2           4   
1615 3 2 1          6   
1620 2 0 0          2   
1625 2 0 0          2   
1630 1 0 3          4   
1635 1 2 1          4   
1640 1 5 0          6   
1645  9 1          10   
1650  5 3          8   
1655  8 0          8   
1660  2 2          4   
1665  2 2 2         6   
1670  2 2 3         7   
1675  1 5 5         11   
1680  1 9 5         15 51  
1685   5 10 2        17 59 0.029 
1690   12 6 4        22 70 0.034 
1695   9 11 2        22 81 0.029 
1700   16 17 4        37 102 0.046 
1705   5 17 5        27 114 0.022 
1710   6 16 9        31 128 0.023 
1715   4 25 19        48 155 0.038 
1720   5 31 20 3       59 187 0.038 
1725   4 18 17 3       42 204 0.017 
1730   0 24 23 6       53 229 0.023 
1735   1 17 39 13       70 265 0.029 
1740    25 35 18 1      79 303 0.026 
1745    26 42 25 1      94 349 0.028 
1750    8 29 11 0      48 357 0.005 
1755    10 35 31 8      84 392 0.019 

                                                       
6  The male population will be used consistently as a proxy for the total population in this article.  
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Table 2 (continued) 
Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

 
Time 

Number of male births in generations Total 
Birth* 

Esti- 
mated 
Pop. 

Growth 
Rate 8 9 10 11 12 13 14 15 16 17 18 19 

1760    3 22 35 9      69 410 0.009 
1765    3 23 28 8      62 422 0.011 
1770    1 31 45 5      82 445 0.011 
1775    1 30 33 20 2     86 468 0.012 
1780     20 50 26 3     99 497 0.019 
1785     20 47 27 4     98 521 0.010 
1790     19 50 27 9     105 548 0.010 
1795     13 38 52 11     114 579 0.011 
1800     9 43 45 13 1    111 604 0.008 
1805     4 35 60 25 3    127 640 0.012 
1810     1 25 61 24 4    115 663 0.007 
1815     2 29 68 22 6    127 694 0.009 
1820      26 57 35 10    128 723 0.008 
1825      16 32 34 8    90 721 -0.001 
1830      13 41 55 11    120 741 0.005 
1835      8 39 54 22 1   124 759 0.005 
1840      10 31 74 27 4   146 791 0.008 
1845      6 34 73 31 9   153 823 0.008 

1850      2 13 44 35 3   97 809 -0.003 
1855      2 20 51 32 8   113 809 0 
1860       9 20 36 6   71 776 -0.008 
1865       4 18 45 5   72 744 -0.008 
1870       9 21 27 15 2  74 715 -0.008 
1875       8 19 42 16 2  87 695 -0.006 
1880       2 21 53 22 2  100 685 -0.003 
1885       5 15 46 26 6  98 673 -0.003 
1890       2 15 43 35 11  105 667 -0.002 
1895        16 29 33 11  89 651 -0.005 
1900        10 21 36 11  78 628 -0.007 
1905        7 29 54 27 4 121 642 0.004 
1910        8 17 30 16 1 72   
Total 15 42 96 284 479 651 724 703 577 303 88 5    
*In the period 1600-1735, the number included the births observed for the eighth, ninth, and tenth 
generations for which the genealogical record was rather incomplete.  
 

 

THE CLAN POPULATION SIZE AND EXOGENOUS DISTURBANCES 

 

     The columns (13) to (15) of Table 2 are represented by three curves in Figure 2. 
From these curves we can first isolate the exogenous influences. The growth of Hsü 
clan through two centuries (1700-1900) was interrupted by certain major exogenous 
events, i.e., natural calamities and wars (indicated in Figure 2). Two quite independent 
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sources of data, the clan genealogies and local gazetteers, are used to study this 
phenomenon. The consistency of these two data sources assures us of the reliability of 
both.    
       

    

Figure 2: Hsiao-shan Hsü Clan 
 

In Figure 2, the curve of “observed total male births” reflects two major 
interruptions: (1) between 1745 and 1765 and (2) between 1820 and 1845. For the 
first case, the local gazetteer of Hsiao-shan recorded a major famine in 1748 such that, 
“even the grass roots and barks were exhausted as the source of food supply and 
people died of eating the kuan-yin 觀音earth which they dug up from the ground.” 
For the second case, the gazetteer stated that in 1820, “a major drought occurred 
between May and July and the river was dried to the bottom to be followed by a flood 
brought about by typhoon, so that nearly 80 percent of the county was inundated with 
no hope of an autumn harvest.” Even minor natural calamities were faithfully 
reflected by minor dips in the birth curve as indicated in Figure 2.7 
     The interference of an “idealized” and smooth growth path by exogenous 
disturbances can be established for all of the ten clans that we have studied in this 

                                                       
7  See Hsiao-shan hsien-chih kao 蕭山縣志稿 (The draft gazetteer of Hsiao-shan county, 1935), 5: 
26-31, for the chronology of natural calamities that occurred during the Ch’ing period. The two 
quotations appear in 5: 27 and 5: 29.     
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article. The long history of China was repeatedly and frequently interrupted by such 
natural calamities that arrested population growth. Our study provides a good 
demonstration of this fact.  
 

THE LIFE CYCLE OF THE CLAN 
 
     From the three curves in Figure 2, we can clearly identify two growth phases 
(before 1845) and the contraction phase (after 1845). The Hsü clan was in the 
contraction phase after 1845, as all the three curves declined absolutely.8  
     The inversed u-shaped population curve suggested that a clan begins to decline 
when its population size reaches a critical maximum value (CMV). This life pattern is 
in fact shown by all the ten clans covered in this study (see Figure 3). The average 
value of the peak clan (male) population of Figure 3 is 673. Our conjecture is that the 
CMV is an optimum value from a functional viewpoint – an issue that will be 
examined in the concluding section. 
 

 
 

Figure 3: Estimated Male Population for Ten Clans in Chekiang, 
Kiangsu, and Anhwei 

                                                       
8  Due to the rather incomplete generational birth schedules prior to the twelfth generation, the total 
male births were underestimated before 1775 (the last birth of the eleventh generation). Hence, the 
growth process in the second half of the expansion phase was closer to the true situation.  
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STYLIZED FACTS OF THE GENERATIONAL BIRTH SCHEDULES 

 
     Before the CMV is reached, the growth of the clan is primarily a demographic 
phenomenon. To investigate this growth process, the generation birth schedules of the 
Hsü clan b0, b1, b2, … and their percentage distributions b*0, b*1, b*2… are represented 
by the bar diagrams and the solid curves in Figure 4, in which the horizontal axis 
represents the ancestor calendar. These diagrams show three stylized facts: an 
asymptotically bell-shaped curve, a constant mean gap, and a diminishing 
concentration tendency.9  
  

 
Figure 4: The Generation Birth Schedules, Hsiao-shan Hsü Clan 

      
For each bell-shaped generation birth schedule we can compute a mean birth 

year when a maximum value is reached (e.g., Y0 = 1752.3, Y1 = 1784.9, Y2 = 1814.8 
                                                       
9  Suppose x = (x1, x2, …, xn) is any row of numbers (i.e., a row vector), we shall use x* = (x*1, x*2,…, 
x*n) = (x1/s, x2/s, …, xn/s) where s = x1 +x2 +…+xn to denote a “normalized” pattern of x. Thus, b*1 is 
normalization of b1.  
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for the twelfth, thirteenth, and fourteenth generations of the Hsü clan). These birth 
schedules are asymtotically bell-shaped as members in the sequence b0, b1, b2, … 
become more regularly distributed in later generations. There are relatively few very 
old and very young male descendants for any generation. Obviously, the mean birth 
year gets larger for later generations (i.e., Y0 < Y1 < Y2 …). On a closer examination, 
we find the mean gap (i.e., the difference between two consecutive means, Y i+1 –Yi, 
such as Y1 – Y0 = 1784.9 – 1752.3 = 32.6 and Y2 – Y1 = 1814.8 – 1784.9 = 29.9) 
appear to take on a constant value around thirty years, indicating a constant mean gap 
property.  
     Finally, we find that the birth range (i.e., the age difference between the oldest 
and youngest males) of a generation increases for later generations. Thus from Table 2, 
the birth ranges are 110 (= 1775 – 1665), 125 (= 1810 – 1685), 135 (= 1855 – 1720), 
and 150 (= 1890 – 1740) years for the eleventh, twelfth, thirteenth, and fourteenth 
generations respectively. This diminishing concentration tendency can also be seen 
from the fact that the b*t “bells” are getting shorted and wider for later generations, a 
property which can also be measured by the standard deviation of b*t.  
     These stylized facts which we have inductively established for the Hsü clan can 
also be established for all of the other clans examined in our article. The rigorously 
imply the structural characteristics of the hierarchy matrix (e.g., Figures 1a and 1b). 
The observed stylized facts are explained in terms of a demographic theory in the next 
two sections.  
 

THE SINGLE ANCESTOR MODEL 
 
    To begin with our theoretical construction for the simplest case, it is natural to 
postulate the existence of single male ancestor E0, the starter of the clan. E0 will 
generate a “wave” of sons over time according to the male fertility schedule U1 = (u1

0, 
u1

1…u1
8) (see Table 3). Thus, u1

i (i = 0, 1, …8) is the probability that the spouse of a 
typical father will give birth to a son by the time that the father’s age reaches the 
mid-point of the i-th age group in the following age groups: 15-19, 20-24, 25-29, 
30-34, 35-39, 40-44, 45-49, 50-54, 55-59. In this way, the first generation E1 will be 
born.10  
     If every male in E1 again generates a “wave” of sons according to U1, the sum 
of all “waves” becomes E2 = (u2

0, u2
1…), the expected birth schedule of the second 

generation. Recursively, the male ancestor generates a sequence of theoretically 

                                                       
10  For the concept of male fertility schedule (i.e., the net reproductive rate), see Henry S. Shryock et 
al., Methods and Materials of Demography (Washington, D.C., 1971), 541. What lies behind U1 are the 
age-specific fertility rates and survival rates. See Appendix 2 for the calculation.  
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expected birth schedules E1, E2,… for all future generations in the single ancestor 
model.  
     The demographic characteristics of the male fertility schedule that contains all 
information needed to generate the entire expected sequence of future generations can 
be described by five indices s1, τ, n, μ1, and σ2

1. First, the sum of all elements s1 = 
1.413 is the total number of sons that ate expected to be born to a typical father during 
his lifetime.11 The magnitude of s1 governs the rapidity of growth of the clan in the 
long run (see the discussion on the size of the clan above). Next, U1 specifies that a 
male before age fifteen cannot generate a son. Thus, τ = 3 (or 3 x 5 = 15 years) is the 
length of the non-productive period. Similarly, n = 9 (or 5 x 9 = 45 years) is the 
productive period, or the maximum age difference between sons of the same father.12 
From the “normalized” U1, to be denoted by U*1 = (u*1

0, u*1
1, …, u*1

n-1) = (u1
0/s1, 

u1
1/s1, … u1

n-1/s1), we can define:  

(i) a mean of U*1: μ1 = 0 u*1
0 + 1 u*1

1 + 2u*1
2 + … + (n – 1) u*1

n-1  (μ1 = 3.187) 

(ii) a variance of U*1: σ2
1 = Σ u*1

1 (i – μ1)2                    (σ2
1 = 3.192) 

Thus τ + μ1 = 3 + 3.187 = 6.187 (or 5 x 6.187 = 30.9 years) is the average fatherhood 
of a typical father, which governs the mean gap between E1 and E i+1. The square root 
of σ2

1 is the standard deviation of U*1, that influences the degree of dispersion of the 
expected birth schedules Ei. These intuitively obvious notions will be reflected in the 
content of the basic theorem stated below.13  
     The parameter value of the male fertility schedule for the ten clan studies in this 
article are summarized in Table 3. Notice that every index shows the same order of 
magnitude for the ten clans, indicating that, during the period of traditional China, 
they are all governed by the same set of demographic forces.14    

When a male fertility schedule U1 is given, we can predict the behavior of the 
expected birth schedules Ei according to the following theorem (proved as corollary 1 
in Appendix 1). In this theorem, E*1 (i = 1, 2, 3 …) are the normalized “relative” 

                                                       
11  The numerical magnitudes cited in this section for illustration purposes are typical values, since 
they are the average of the ten clans listed in Table 3.    
12  Intuitively, the productive period n governs the birth range of the expected birth schedules Et which 
is t (n – 1) + 1. For example, by the time of t = 72, the maximum age difference between the oldest and 
the youngest male descendants of “Confucius” in the seventy-second generation “could be” as high as  
72 (45 – 1) + 1 + 3,169 years! 
13  Imagine that the “age of father” is recorded on the birth certificate of every male child, then (τ + μ1) 
is the average “age of father” computed from a large number of such certificates. In our case, we were 
able to reconstruct more than 30% of families with birth dates of sons known from the genealogies.  
14  The trend of s1, which is suppressed in this article, can be further explored to supplement the study 
of Chinese population problems (e.g., fertility and mortality rates) in a historical perspective. See 
Ts’ui-jung Liu, “The Demographic Characteristics of Two Clans in Hsiao-shan, 1650-1850,” in Arthur 
P. Wolf and Susan B. Hanley (eds.), Historical Demography and Family History in East Asia, 
(forthcoming; note: it is published by Stanford, California: Stanford University Press, 1985).  
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frequencies of the expected birth schedules Ei (i = 1, 2, 3…). An ancestor calendar/ 
(instead of the Christian calendar) is used by taking the birth year of E0 (the ancestor) 
as the 0 year: 
 

Table 3. The Male Fertility Schedule (U1) and Normalized Distribution (U*1) 
 
 
Clan 

Age  
 

s1 

 
 

μ1 

 
 

σ2
1 

15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 
u1

0 u1
1 u1

2 u1
3 u1

4 u1
5 u1

6 u1
7 u1

8 
Wu-chin 
Chou (4) 992a  

U1 .051 .196 .260 .315 .283 .127 .030 .015 .033 1.309   
U*1 .039 .150 .199 .241 .216 .097 .023 .011 .024  3.027 2.736 

Hsiu-ning 
Chu (1)1159 

U1 .073 .217 .261 .287 .227 .167 .065 .030 .032 1.359   
U*1 .054 .160 .192 .211 .167 .123 .048 .022 .023  3.086 3.345 

Yü-yao  
Shih (2)1249 

U1 .057 .184 .254 .259 .243 .165 .097 .030 .030 1.319   
U*1 .043 .139 .193 .196 .184 .125 .074 .023 .023  3.263 3.360 

T’ung-ch’eng 
Wang (1)1320 

U1 .133 .247 .289 .244 .203 .139 .082 .035 .018 1.390   
U*1 .095 .177 .208 .176 .146 .100 .060 .025 .013  2.844 3.558 

Tz’u-ch’i 
Ch’ien (1)1336  

U1 .096 .288 .400 .333 .311 .220 .110 .081 .031 1.870   
U*1 .051 .154 .214 .178 .166 .118 .059 .043 .017  3.161 3.545 

Wu-chin 
Chou (1)1365 

U1 .027 .180 .241 .289 .264 .181 .094 .023 0 1.200   
U*1 .021 .139 .186 .222 .203 .139 .072 .018 0  3.242 2.567 

Hsiao-shan 
Ts’ao (15)1381 

U1 .036 .164 .233 .293 .269 .225 .118 .050 .018 1.406   
U*1 .026 .117 .166 .208 .191 .160 .084 .036 .012  3.489 3.092 

Hsiao-shan 
Shen (18)1380 

U1 .053 .208 .287 .272 .240 .164 .117 .046 .020 1.407   
U*1 .038 .148 .204 .193 .171 .116 .083 .033 .014  3.240 3.340 

Hsiao-shan 
Hsü (4)1458 

U1 .054 .129 .207 .254 .246 .179 .113 .064 .014 1.260   
U*1 .043 .102 .164 .202 .195 .142 .090 .051 .011  3.511 3.362 

T’ung-ch’eng 
Chao (9)1460 

U1 .074 .244 .323 .301 .281 .158 .185 .021 .023 1.510   
U*1 .049 .162 .214 .199 .186 .105 .056 .014 .015  3.010 3.012 

Average           1.413 3.187 3.192 
a. The number after the name of the clan is the first birth year in record with its generation indicated 

in the parenthesis.  
 
 

Basic theorem: the sequence of relative frequencies E*1 of the expected 
generation birth schedule Ei is asymptotically normally distributed, i.e., for large t, 
E*t is approximately distributed as  
      N (μE(t), σ2

E(t))  where  
      μE(t) = t (τ + μ1) and (= 6.187t or 5 x 6.187t = 30.9 years) 
      σ2

E(t) = tσ2
1           (= 3.192t) 

are respectively the mean and the variance of a normal distribution.  
     This theorem can explain all of the stylized facts of Figure 4. First, the theorem 
not only predicts that the relative frequencies of the generational birth schedules (b*t) 
are bell-shaped, but is also predicts that they are approximately normally distribute. 
Furthermore, they become more “regular” for later generations. Next, the theorem 
states that the mean gap for two consecutive generations is μE(t + 1) - μE(t) = τ + μ1 or 
30.9 years. Thus, the theorem not only predicts a constant mean gap but also tells us 
that the magnitude of this gap is precisely the average fatherhood age. Finally, the 
theorem predicts the diminishing concentration tendencies for Ei as the variances tσ2

1 
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increases for later generations. By giving plausible explanations to all the stylized 
facts, the basic theorem lends support to a demographical thesis underlying the 
formation of the clan.  
 

THE MULTIPLE ANCESTOR MODEL 
 
     The clan as a Chinese institution in the pre-modern period is generally believed 
to have prevailed for some 800 years, beginning with the Sung dynasty. As pointed 
out by Freedman, the southeastern Chinese clans commonly extended to about 
twenty-five generations in the recent past. This is so because the constant mean gap of 
5(τ + μ1) or 30.9 years implies a total of 773 years for twenty-five generations.15 
     For the study of such an antiquated institution, the lack of data for the early 
generations is an obvious impediment. The single ancestor model must be modified to 
accommodate the data deficiency. In a multiple ancestor model, a particular 
generation is first chosen as the ancestor generation, the birth schedule of which will 
be referred to as the ancestor birth schedule E0. All the males in E0, who are in fact 
distant cousins, will be interpreted as “ancestor.” A sequence of expected generation 
birth schedules E1, E2, … is generated from E0 when the same male fertility schedule 
is applied.  
     This theoretical procedure is illustrated by the Hsü clan in Figure 4. For the 
twelfth generation (i.e., the ancestor generation), there is one curve b*0 = E*0 which is 
the relative frequency of the ancestor birth schedule. There are two curves for each of 
the thirteenth and fourteenth generations. In addition to the observed sequence b*1 and 
b*2 (i.e., the solid curve), there is an expected sequence E*1 and E*2 (i.e., the dotted 
curve) which is the sequence of the recursively generated expected birth schedules.   
     The primary data input of the multiple ancestor model is the pair (E0, U1). In 
addition to the five indices defined for U1 in the last section, there are four additional 
indices for the birth schedule of ancestor generation b0 = E0. The sum of all entries in 
b0 is sb

0 = 479, the total number of male ancestors. The age difference between the 
oldest and the youngest males in b0 is γ = 135, the ancestor birth range.  
     In the multiple ancestor model, it is natural to take the year in which the first 
ancestor was born as the 0 year of the ancestor calendar. (For the Hsü clan in Figure 4, 
the year 1685 is such a year and is the origin of the time axis.) To facilitate our 
exposition, we shall refer to b*0 = E*0 as a probability distribution function for an 
ancestor random variable x. In the ancestor calendar, x has a mean value μ0 = 13.46 

                                                       
15 H. W. Liu, Clan Rules, 7; Shimizu Morimitsu 清水盛光, Shina kazoku no kozo 支那家族の構造 
(The structure of Chinese family and clan) (Tokyo, 1942), 215-228. Freedman, Lineage Organization, 
6-7.  
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(or 5 x 13.46 = 67.3 years), the mean birth year of the ancestors, and a variance σ2
0 = 

26.696. thus, altogether there is a total of nine indices s1, τ, n, μ1, σ2
1, sb

0, γ, μ0, and 
σ2

0 defined for the pair (E0 = b0, U1) in the multiple ancestor model. The following 
theorem (proved as corollary 2 in Appendix 1) is a direct generalization of the basic 
theorem in the last section.16   
     Generalized Theorem: for large t, the relative frequency E*t is describable 
approximately by the probability distribution function of a random variable zt = x + yt 
where  

(i) x is the ancestor random variable with mean μ0 and variance σ2
0 

(ii) yt has a normal distribution N(μy, σ2
y) where    

    μy = t(τ + μ1)  
    σ2

y = tσ2
1  

    and hence the mean and variance of zt are given by 
(iii) μz(t) = μ0 + t(τ + μ1) 

                    (mean: μz(t) = 13.46 + 6.51t) 
    σ2

z(t) =σ2
0 + tσ2

1 
                        (variance: σ2

z(t) = 26.696 + 3.362t) 
     This theorem, which provides us with a method to approximate the recursively 
generated E*t by a well-defined function f(zt), is illustrated in Figure 5.  
 

 
Figure 5: Observed, Expected, and Approximated Relative Frequencies 

                                                       
16  Note that if E0 = b0 contains precisely one ancestor, the multiple ancestor model reduces to the 
specific case of the single ancestor model.  
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For the thirteenth and fourteenth generations the b*t and E*t curves of Figure 4 are 
reproduced. For each generation, a third curve, corresponding to f(zt), is now added. 
Notice that E*t and f(zt) are, for all purposes, indistinguishable.17 To test our theory, 
we can compare b*t and f(zt). 
     Can f(zt) predict all the stylized facts? First, b*t is predicted to be bell-shaped, a 
slightly distorted normal distribution (see note 17). Moreover, the constant mean gap 
(τ + μ1), and the increasing variance (σ2

1) properties proved for the single ancestor 
model, remain intact. Thus, the multiple ancestor model can be accepted. Six of the 
ten clans of Table 3 required the use of this model because of the data deficiency in 
early generations. The stylized facts are indeed verifiable for all of them. This testifies 
to the validity of the demographical approach.18 
 

THE SIZE OF THE CLAN 
 
     To understand the clan as a self-contained socioeconomic function group, we 
should also theorize on the clan population size (see the section on the hierarchy 
matrix, above). As far as total male births are concerned, the basic theorem allows us 
to construct an expected sequence of generation birth schedules E1, E2, …. When they 
are tabulated as in Table 2, the sum of all columns denoted by E0 (= b0) + E1 + E2 +… 
is the expected total male births and is shown by the dotted curve in Figure 2. We 
have a clearer idea of the expansion and contraction of the clan by comparing the 
“observed” with the “expected” total male curves. When the clan was in the 
expansion phase (before 1845), the two curves follow the same time trend. In contrast, 
in the contraction phase (after 1845), the two curves clearly diverge as the expected 
total birth curve continues its increasing trend, while the observed total birth curve 
decreases through time. The turning point (1845) clearly marks off two phases of the 
life cycle of the clan. The total male population curve is inverse u-shaped and reaches 
the CMV at the turning point. 
    The demarcation of the two phases of the life cycle indicates that the formation 
and disintegration of the clan are governed by two distinct set of forces. What governs 
the expansion phase is basically a set of demographical forces. This is clearly shown 
by the coinciding pattern of the observed and expected total male birth curves. The 

                                                       
17  The immediacy of the nearly perfect approximation is amazing as the above theorem predicts a 
good approximation only for large t regardless of the shape of U1 or b0. The good approximation for 
small t (i.e., for t = 1 and t = 2 corresponding to the thirteenth and fourteenth generations) is accounted 
for by two reasons. First, the male fertility schedule U1 is, itself, bell-shaped. Second, the ancestor birth 
schedule (or E*0 = b*0) is also bell-shaped as the basic theorem of the single ancestor model already 
predicts that b*0 should be bell-shaped – in fact, normally distributed.   
18 The expected sequences of other clans are too lengthy to be presented in this article.  
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divergence between them in the contraction phase reflects an entirely different set of 
forces, as is discussed in the next section. 
     One key analytical issue for the expansion phase is the rapidity in the formation 
of the clan. In the case of Hsü clan, it took 160 years (1685-1845) to grow to the CMV. 
Let sb

0, sb
1, sb

2 … be the total male births of each generation (i.e., sb
t is the sum of all 

elements in bt in the multiple ancestor model). Obviously, sb
t depends upon sb

0 = 470 
(i.e., the total number of ancestor in b0) and s1 = 1.26 (the total number of sons of a 
typical father). In the multiple ancestor model, it is not difficult to prove the following 
theorem (Lemma 3 of Appendix 1). 
Theorem 2: The total male births of the t-th generation is given by sb

t = sb
0st

1. 
Thus in the expansion phase, the generation population grows according to the rule of 
geometric progression.19  
     In addition to the growth of population by generations, we can also investigate 
the rapidity of growth of the total population via the use of modern demographical 
concepts. When the male fertility and mortality schedules are given, we can derive 
what is called the stable population growth rate (or the “intrinsic” growth rate) by 
solving a well-known equation.20 Using the data of the Hsü clan (see Appendix 2), 
the intrinsic growth rate is computed as r = 0.007 and is shown by the horizontal line 
in Figure 2. It is that growth rate of the total clan population that prevails in the long 
run. This growth rate applies only in the expansion phase. In this phase, the observed 
growth rate first decelerates toward and then fluctuates above the intrinsic growth rate. 
(In the contraction phase, the observed growth rate falls below the intrinsic growth 
rate.) 
  

THE DISINTEGRATION OF THE CLAN 
 
     From its beginning in the Sung period, the institution of Chinese clan finally 
disintegrated toward the latter half of the nineteenth century. From Figure 3 we see 
clearly that the year 1850 was the turning point when most of the clans which we have 
studied began to decline, never to revive again. Although the Taiping rebellion might 
have been a contributory cause, their simultaneous disintegration signifies the 
termination of a long epoch which had existed in China for some 800 years. 

                                                       
19  According to this formula, the expected total births are 604 and 761 for the thirteenth and 
fourteenth generation respectively. The expected birth schedules are represented by the bar diagrams 
superimposed on those of the observed total births in Figure 4. The amount that the latter fall short of 
(exceed) the former is represented by the shaded (“crossed”) area. After the turning point (1845), the 
shaded areas predominate. This is again an indication that the clan had begun to disintegrate.   
20  The equation is ∫w

0 e-ra p(a)m(a)da = 1. See Coale and Demeny, Regional Life Tables, 9-10, for a 
brief discussion on A. J. Lotka’s original idea of stable population. Also see Shryock et al., Methods 
and Materials of Demography, 528, for the methods of calculation.  
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     The Sung period heralded not only the beginning of the epoch of clan 
institution but also the development of the art of local government and the market 
system in traditional China. These new developments thus limited the functions to be 
performed by the clan in educating and rearing the youth, providing social security for 
the seniors and needy members, arbitrating minor disputes, and performing certain 
ceremonial functions.21  
     The termination of the long epoch of clan institution is an issue which should be 
separated from the life cycle of individual clans within this epoch. For example, in 
Figure 3, the Ch’ien clan and the Chu clan reached their peaks in 1640 and 1700, 
respectively, as they went through their individual and non-coinciding life cycles. To 
search for causes of the formation and disintegration of individual clans, we should 
emphasize their scale economy and diseconomy relative to the socioeconomic 
functions that they were expected to perform within the epoch.22  
     The clan was a space-sensitive social group. A precondition for the performance 
of all its functions was that its members have direct personal contact with one another. 
Because of the rather primitive means of communication and transportation in a 
pre-modern society, members of a clan could not live far apart (i.e., to satisfy the 
unilocal property).  The primary school sponsored by the clan had to be attended by 
all school-age children. Members of the clan had to attend ceremonies at individual 
houses or at the clan temple. A dispute had to be quickly brought to the attention of 
the clan authority. All of these functions involved personal contacts within walking 
distance.  
     When the clan membership had grown to the critical maximum size (CMV) of 
about 700 males or 1,400 males and females, the clan would have contained any- 
where from 200 to 300 families. The execution of all of the clan functions was still 
quite manageable. For example, when the Hsü clan male population reached the peak 
value of 823, the number of school-age boys (according to Figure 1a) would have 
been around 130, all of whom could still have been accommodated on one centrally 
located school, even if everyone had chosen to attend the school. Conversely, the 
settlement of even a minor dispute would have taxed the capacity of the clan authority 
when the number of families was much larger than 300 or 400. The socioeconomic 

                                                       
21  For studies on the art of local government see, for example, James T. C. Liu, “The Sung Views on 
the Control of Government Clerks,” Journal of Economic and Social History of the Orient, X (1967), 
317-344. For the development of the market system see, for example, G. William Skinner, “Marketing 
and Social Structure in Rural China, Pt. II,” Journal of Asian Studies, XXIV (1965), 195-228.  
22  The case of the Ch’ien clan was due to a specific way of recording in its genealogy and the case of 
the Chu clan was due to migration. For a detailed discussion, see Ts’ui-jung Liu, “Demographic 
Dynamics of some Clans in the Lower Yangtze Area.” 
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functions intrinsically determined the CMV that limited further expansion of the 
clan.23   
     After the CMV had been reached, the scale diseconomy was accentuated 
because members would have had to live far apart. In an agrarian economy, the 
expansion of the clan population necessitated a simultaneous expansion of the area of 
cultivation. To minimize the daily transportation time for agricultural production, the 
sites of residence of its farming households spread out centrifugally. This dispersion 
increased the difficulty of contact and communication and hence rendered the clan 
functions inoperable. After the CMV was reached, the clan disintegrated because its 
members were alienated as a result of the space sensitive pattern of population 
location required of agricultural production. This disintegration was inevitable even 
when the supply of land was “unlimited.” 
     In the long run, population pressure constituted a new dimension of the problem 
because of the shortage of land area in a particular locality. Thus, superimposed on the 
centrifugal movement of farming households was the long-distance emigration when 
the local supply of land was exhausted. Natural calamities periodically hastened this 
process; exodus members often never returned, for basic economic reasons, to the 
place where their ancestor was born. Consequently, the descendants of the emigrants 
would not be recorded in the genealogies. Thus, although the expansion of clan was 
governed by demographic forces when the land supply was still abundant, its 
disintegration was rendered inevitable by land shortage. The life cycle of the 
individual clan was governed by multiple causes.   
     Why should a clan have disintegrated once it reached the CMV? Why could it 
not have maintained an optimum size? A clan did not exist in a social vacuum; it 
assumed a social existence. Our conjecture is that a clan would have had to compete 
with other clans and families for the acquisition of land in a particular locality. Before 
the CMV was reached, a clan grew with vitality and enjoyed a competitive advantage 
in land acquisition because of the potential of its efficiency of large-scale production. 
After he CMV was reached, our functional argument implies that all families of a clan 
with a number of populations in excess of the CMV would have had to disaffiliate 
with the clan. Thus in the declining phase, of its life cycle, the clan lost its 
competitive strength in land acquisition, and hence it went backward when it could 
not go forward, much like a boat rowing upstream against a rapid current.  
 
 
 
                                                       
23  It has been pointed out by many scholars that the traditional Chinese families were mostly 
small-sized with an average of 5.5 persons. In the case of stem families, the estimated size was about 
10 persons. See H. W. Liu, Clan Rules, 2-3. 
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Appendix 1 
 
Single Ancestor Model 
     In this single ancestor model the clan is started by a single male ancestor (i.e., 
the zero generation), the birth year of which is treated as the 0 year of the ancestor 
calendar. Letting 0m = (0, 0, 0, …,0) be a row vector with m-zeros, the male fertility 
schedule can be written as  
A1a)   E1 = (0τ, U1) where 
  b)   U1 = (u1

0, u1
1, u1

2, …, u1
n-1) with  

  c)    s1 = u1
0 + u1

1 +… + u1
1 

where τ is the non-productive period, n the fertility range, and s1 the total number of 
sons expected to be born to a typical father during his life time.  
     Letting Et be the birth schedule of the t-th generation, we have  
A2a)   Et = (0tτ, Ut)  t = 1,2,…, where 
  b)   Ut = (ut

0, ut
1, ut

2, …, ut
t(n-1)) with  

  c)    st = ut
0 + ut

0 + … + ut
 t(n-1). 

Notice that Et is defined in A1. For t ≥ 1, Et implies that the oldest (youngest) male is 
not expected to be born before (after) the tτ-th (t(τ + n – 1) + 1) year of the ancestor 
calendar. Thus the birth range of Et is t(n – 1) +1 years, and the total births of the t-th 
generation is st. When a row vector Xn = (x1, x2, …, xn) is given, we can define the 
following matrix: 
 
                x1, x2, x3, …., xn    0, 0, 0, …, 0 
                0, x1, x2, x3,…, xn     0, 0, …, 0 
                0, 0, x1, x2, x3,…, xn        0, …, 0 
A3)  R(m, Xn) =  .  .          .     .    .   . 
                .   .  .           .    .    . 
                .    .  .             .   ,  0 
                0, . . . , 0, x1, . . . . . . . . . . . . . . .. xn  
 
with m rows and m + n – 1 columns. In this notation, Ut+1 is related to (i.e., generated 
by) Ut as follows:  
A4a)  Ut+1 = Ut R(t) where  
  b)  R(t) = R(t(n – 1) + 1, U1).  
Notice that Ut has same number of columns as R(t-1) which is ((t–1) (n–1) + 1) + n–1 = 
t(n – 1) + 1, i.e., the birth range of Et defined in A2b).  We have the following 
lemma: 
     Lemma 1: The sum of all elements in Ut (or Et) is st = st

1 and the relative 
frequencies of Ut and Et are, respectively   
A5a)   U*t = (1/st

1)U1, R(1), R(2), …, R(t-1) 
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  b)   E*t = (0tτ, U*t).  
     Proof: A5b follows from A2. Applying A4 recursively, we have  
Ut = U1 R(1) R(2), …., R(t-1).  
     Post multiplying both sides by the column vector (1,1, …, 1), we have st = st

1 
by A1c which implies A5a. QED. 
     A random variable x with a probability distribution function f(x) will be called 
“zero-rooted with a range n” if f(x) = 0 except for x = 0, 1, 2, …, n–1. For these 
n-distinct values of x, f(xa0 can be written in a vector form: 
A6a)   Px = (p0, p1, …., pn-1)   

(i.e., f(x) = Px for x = 0, 1, …., n–1 ) 
  b)   p0 + p1 + … + pn-1 = 1 
The mean μx and variance σ2

x of x can be unambiguously defined.  
     We can interpret E*t and U*t in A5b as the probability distribution function of 
the zero-rooted random variable zt and St respectively with mean and variance 
denoted by (μE(t), σ2

E(t)) for zt and (μt, σ2
t) for St. A5b implies zt = St + tτ and hence 

A7a)   μE(t) = μt + tτ 
  b)   σ2

E(t) = σ2
t 

For t = 1, μE(1) = μ1 + τ and σ2
1 are, respectively, the mean birth year and the variance 

of the male fertility schedule E1. For t ≥ 1, μE(t) and σ2
E(t) are, respectively, the mean 

and variance of the birth schedule of the t-th generation in the ancestor calendar. We 
will need the following lemma: 
     Lemma 2: If the zero-rooted random variable x (similarly y) with a probability 
distribution function Px = (x0, x1, …, xn-1) (similarly, Py = y0, y1, …, ym-1) with a mean 
μx (μy) and variance σ2

x (σ2
y), then z = x + y is a zero-rooted random variable with a 

probability distribution function: 
A8a)   Pz = (z0, z1, …, zn+m-2) = PxR(n, Py) with  
  b)   μz = μx + μy   (mean of z) and 
  c)   σ2

z = σ2
x + σ2

y  (variance of z). 
     Proof: A8bc are obvious. Notice that z has a range 0, 1, 2,…, n+m–2 and is thus 
a zero-rooted random variable. For any integer i satisfying 0 ≤ i ≤ n+m–2, zi = ∑xkyj 
summation over k + j = i. In case m ≤ n, we have 
       x0yi + x1yi-1 +x2yi-2 + …+ xiy0   for i ≤ m ≤ n    

zi =  xi-nym + xi-n+1ym-1 +… + xiy0   for m < i ≤ n 
     xi-nym + xi-n+1ym-1 + … + xn-1yi-(m-1)   for m ≤ n < i 

In all cases, zi is the i-th element in the row vector PxR(n, Py). For n < m, the proof is 
similar. QED. 
With the aid of this lemma we can prove:  
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     Theorem 1: If x1, x2, … xt are independent and zero-rooted random samples 
from a population U*1, the sample sum St = x1 + x2 + … + xt is a zero-rooted random 
variable with a probability distribution function U*t such that: 
A9a)   μt = tμ1 
  b)   σ2y = tσ2

1 
     Proof: A9ab are obvious. To prove the theorem inductively, for t = 1, St = x1 and 
the theorem is true by definition. Suppose the theorem is proved for t, then St+1 = St + 
xt+1. The inductive hypothesis and Lemma 2 imply St+1 has a probability distribution 
function 
     U*tR(t(n – 1) + 1, U*1) = (1/st+1

1)UtRt   by A4b) and Lemma 1 
                       = (1/st+1

1)Ut+1     by A4a) 
                       = U*t+1         by Lemma 1. 
QED. 
Substituting A9ab in A7ab, we have  
A10a)   μE(t) = t(τ + μ1) 
   b)   σ2

E(t) = tσ2
1 

where τ + μ1 is the mean birth age of the male fertility schedule U1. The central limit 
theorem applied to Lemma 1 leads to the following corollary: 
     Corollary 1: For large t, E*t is approximately normally distributed N(μE(t), 
σ2

E(t)) where the mean μE(t) and variance σ2
E(t) are defined in A10ab.  

This is the basic theorem of the single ancestor model. 
 
Multiple Ancestor Model 
     For the multiple ancestor model, in addition to the male fertility schedule U1 
defined in A1, we need the ancestor birth schedule:  
A11a)   b0 = (b0

0, b0
1, b0

2, …, b0
γ+1) with  

   b)   s0 = b0
0 + b0

1 + b0
2 +… + b0

γ+1 
where s0 is the total number of ancestors and where γ is the ancestor birth range. 
Letting Et (t = 1, 2, 3,…) demote the birth schedule of the t-th generation, then 
A12a)   Et = (0tτ, bt) where 
   b)    bt = (bt

0, bt
1, bt

2, …, bt
t(n-1)+γ-1) with 

   c)    sb
t = bt

0 + bt
1 + bt

2 + … + bt
t(n-1)+ γ-1  

This is because for the t-th generation the first (last) male is not expected to be born 
before (after) the tτ-th year (t(n-1)+ γ–1 year) in the ancestor calendar (i.e., the 0 year 
is now the birth year of the first male in b0). The sum of all elements in Et (or bt) is sb

t, 
the total birth of the t-th generation.  
     The b0

i ancestor in b0 generates a birth schedule b0
iUt for the t-th generation.  

Since b0
i+1Ut lags behind b0

1Ut by one year, we have  
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A13)   bt = b0R(γ, Ut).  
This leads to the following lemma” 

Lemma 3: The total male births (i.e., the sum of all elements in Et or bt) is sb
t = 

s0st
1 (for s1 defined in A1c) and the relative frequencies of b* and E* are 

A14a)   b*t = (1/sb
t)b0R(γ, Ut) = b*0 R(γ, U*t) 

   b)   E*t = (0tτ, b*t).  
     Proof: A14b follows from A12a. Post multiplying both sides of A14 by a 
column (1, 1, ..., 1) leads directly to sb

t = s0st
1 by lemma 1 (i.e., st = st

1). QED.  
     This lemma involves four relative frequencies E*t, b*t, b*0, and U*t which may 
be interpreted as the probability distribution functions of four zero-rooted random 
variables zt, wt, x, and St with means and variances denoted by (μE(t), σ2

E(t)), (μw(t), 
σ2

w(t)), (μ0, σ2
0), and (μt, σ2

t). A14b implies that zt
 = wt + tτ and hence 

A15a)   μE(t) = μw(t) + tτ 
   b)   σ2

E(t) = σ2
w(t) 

The relation between wt, x and St is covered by the following theorem: 
     Theorem 2: If wt, x and St are the zero-rooted random variables with probability 
distribution function b*t, b*0, and U*t, then wt = x + St and hence 
A16a)     μw(t) =μ0 +μt 
   b)     σ2

w(t) = σ2
0 +σ2

t 
     Proof: applying Lemma 2 to the pair “x and St” then A14a implies the theorem 
directly. QED. 
     Substituting A16ab in A15ab and making use of A9a, we have 
A18a)     zt = wt + tτ = x + St + tτ or  
   b)      zt = x + y where y = St + tτ 
the central limit theorem implies that, for large t, y is approximately normally 
distributed . Thus we have 
     Corollary 2: For large t, the relative frequency E*t is distribute as the sum of 
two random variable zt = x +y where x has the probability distribution b*0 (i.e., 
relative frequency of the ancestor birth schedule with a mean μ0 and variance σ2

0) and 
where y is approximately normally distributed with a mean t(τ + μ1) and variance tσ2

t. 
(The mean and variance of zt are defined in A17ab.) 
This is the basic theorem of the multiple ancestor model.   
 

Appendix 2 
 
     In this appendix, taking the Hsü clan as an example, we discuss the nature of 
the genealogical data and the method of computing the empirical values of the birth 
schedules and the male fertility schedule. 
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     For the first three generations, the Hsü clan genealogy recorded only three 
names, without information on vital dates. From the fourth generation on, the record 
of vital dates can be found at first spottily and gradually more completely. Table A1 
shows the number of males recorded by generations. These numbers and dates are the 
basic materials for our empirical evidence.  
     The generation birth schedules as shown in Table 2 of the text are derived by 
identifying he males in each generation according to their birth years at five-year 
intervals starting from 1600 (i.e., 1600 is the mid-point of the interval 1598-1602, 
etc.). The males whose birth years are not known are not taken into consideration in 
the construction of the birth schedules. As can be seen from Table A1, from the 
twelfth generation onward, the numbers with birth year known constitute well over 85 
percent of the total; thus, the deleted unknown numbers may not cause great bias in 
our observation from the year 1685 onward.  
 
Table A1: The Hsü Clan Male members Recorded in the Genealogy 
Genera- 
tion 

Birth Year  
Total 

Ratio  
Year known Known Unknown Known/Total 

4   1   3   4 .25 1458 
5   1   7   8 .13 1505 
6   4  57  31 .13 1528, 1545, 1540, 1554 
7   7  55  62 .11 1552, 1561, 1572, 1576, 1582, 1583, 1593 
8  17  87 104 .16 1579-1639 
9  42 119 161 .26 1605-1682 

10  98 160 258 .38 1615-1735 
11 284 122 406 .70 1663-1774 
12 479  82 561 .85 1685-1816 
13 651  54 705 .92 1721-1856 
14 724  33 757 .96 1740-1890 
15 704  43 747 .94 1773-1911 
16 577  10 587 .98 1800-1911 
17 303   3 306 .99 1835-1911 
18  88   2  90 .93 1870-1911 
19   5   0   5 1.00 1905-1911 

  
Since the male fertility schedule (U1) consists of two elements – the male 

age-specific fertility rates and mortality rates – each of them is discussed separately.  
The male age-specific fertility rates were computed by applying the technique 

of family reconstitution to the genealogical data. On each family reconstitution sheet, 
the vital dates of parents and sons were recorded and the age differences between the 
father and sons were calculated. The fathers were grouped into five-year birth cohorts 
according to their birth years. The numbers of sons born to the fathers of the same 
cohort were distributed according to the ages of fathers in their reproductive period. 

When we compute the age-specific fertility rates, the numerator is the aggregate 
number of sons born to the fathers at each age group and the denominator is the 
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aggregate person-years spent by the fathers at each age group. Thus, the age-specific 
fertility rates of the cohorts of fathers can be obtained. Table A2 shows the male age –
specific fertility rates computed from the data provided by the Hsü clan genealogy. In 
the text, the average value was used.  
     
Table A2: The Age-specific Fertility Rates of the Males, Hsü Clan 
     
Age    Na 
Group   

Cohorts  
Average 1600-1649 1650-1699 1700-1749 1750-1799 1800-1849 

19 74 316 473 470 
15-19 0.042 0.014 0.009 0.009 0.013 0.017 
20-24 0.032 0.032 0.046 0.049 0.050 0.042 
25-29 0.042 0.072 0.068 0.084 0.091 0.071 
30-34 0.053 0.089 0.085 0.114 0.122 0.093 
35-39 0.079 0.094 0.110 0.098 0.110 0.098 
40-44 0.088 0.050 0.089 0.068 0.105 0.080 
45-49 0.091 0.054 0.051 0.046 0.054 0.059 
50-54 0.070 0.038 0.024 0.038 0.036 0.041 
55-59 0.014 0.017 0.012 0.007 0.012 0.012 
GRR 2.555 2.300 2.470 2.795 2.965 2.565 
a  N denotes for number of families in observation. 

GRR = Gross reproductive rate, i.e., the sum of age-specific fertility rates times 5.  

 

For computing the age-specific mortality rates, the technique if constructing a 
life table is applied to the genealogical data. Just as in the computation of the 
age-specific fertility rates, the males are first grouped into cohorts and then, according 
to their age at death, the age distribution of deaths for each cohort can be obtained. 
The number of deaths at each age group can be added up from the last age group to 
the first age group to obtain the number of survivors at each age group. The ratios 
derived from dividing the number of deaths by the number of survivors at each age 
group are the age-specific death rates. The observed death rates should be gradually 
for the purpose of constructing a life table.  
     In this study, all cohorts of the same clan are combined together to construct a 
life table. Table A3 shows, for example, a life table constructed for the males of the 
Hsü clan.  

It should be noted that due to the nature of genealogical recording, the 
age-specific death rates of children under age fifteen cannot be derived directly 
because the information of child deaths is usually very incomplete. 
     In constructing a life table for all age groups, we have first constructed a life 
table of adults and then chosen two Princeton model life tables as references and 
extrapolated the observed values of death rates from the age fifteen down to age zero. 
This may not be the best solution for the estimates of the child mortality; however, a 
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better method for estimating the child mortality from the incomplete data of Chinese 
genealogies has yet to be devised.  
     For obtaining the male fertility schedule, the average age-specific fertility rates 
as shown in Table A2 are multiplied by the survival rates (i.e., the Lx/5‧l0 values in 
the live table) at each age group and then multiplied by 5.  
 

Table A3: Life Table of the Hsü Clan Males born 1600-1829 
Age  qx lx dx Lx Tx ex 
0-1 0.2137 10,000 2,137  8,568 335,483 33.55 
1-4 0.1249 7,863 982 28,852 326,915 41.58 
5-9 0.0335 6,881 231 33,828 298,063 43.32 

10-14 0.0241 6,650 160 32,850 264,235 39.73 
15-19 0.0335 6,490 217 31,908 231,385 35.65 
20-24 0.0472 6,273 296 30,625 199,477 21.80 
25-29 0.0524 5,977 313 29,103 168,852 28.25 
30-34 0.0706 5,664 400 27,300 139,749 24.67 
35-39 0.0941 5,264 495 25,083 112,429 21.36 
40-44 0.1243 4,767 593 22,362  87,346 18.32 
45-49 0.1624 4,176 678 19,185  64,984 15.56 
50-54 0.2097 3,498 734 15,655  45,799 13.09 
55-59 0.2685 2,764 742 11,965  30,144 10.91 
60-64 0.3396 2,022 687  8,393  18,179  8.99 
65-69 0.4257 1,335 568  5,255   9,786  7.33 
70-74 0.5273  767 404  2,825   4,531  5.91 
75-79 0.6473  363 235  1,228   1,706  4.70 
80+ 1.0000  128 128    478     478  3.73 
Notations:  
qx : Probability at age x of dying before reaching x + n. 
lx : Number of survivors at age x out of an original cohort of 10,000. 
dx : Number of deaths between age x and x + n out of an original cohort of 10,000. 
Lx : Number of person-years lived between age x and x + n by an original cohort of 10,000. 
Tx : Number of person-years lived at age x and over by an original cohort of 10,000. 
ex : Average number of years remaining to be lived (expectation of life ) at age x.  
 
 
The genealogies used in this paper are as follows:24 
1. Hsü clan: Hsiao-shan T’ang-wan Ching-t’ing Hsü-shih tsung-p’u 蕭山塘灣井亭

徐氏宗譜 (1911). 
2. Shen Clan: Hsiao-shan Ch’ang-hsiang Shen-shih tsung-p’u 蕭山長巷沈氏宗譜

(1893) 
3. Ts’ao clan: Hsiao-shan Shih-ts’un ts’ao-shih tsung-pu 蕭山史村曹氏宗譜(1880). 
4. Shih clan: Yü-yao Shih-shih tsung-p’u 餘姚史氏宗譜(1914). 

                                                       
24  A detailed study on the demographic data of these genealogies can be found in Ts’ui-jung Liu, 
“Demographic Dynamics of some Clans in the Lower Yangtze Area.” 
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5. Ch’ien clan: Ch’ien-shih cheng-tsung-p’u 錢氏正宗譜 (manuscript).   
6. Chou clan: Pi-ling Shih-li-p’ai Chou-shih tsung-p’u 毘陵十里牌周氏宗譜(1904). 
7. Tsou clan: Pi-ling Tsou-chih tsung-p’u 毘陵鄒氏宗譜(1875). 
8. Wang clan: T’ung-ch’eng Wang-shih tsung-p’u 桐城王氏宗譜(1866). 
9. Chao clan: T’ung-ch’eng Chao-shih tsung-p’u 桐城趙氏宗譜(1883). 
10. Chu clan: Hsin-an Yüeh-t’an Chu-shih tsung-p’u 新安月潭朱氏宗譜(1931). 


